Copper Oxide Nanoparticles Induce Autophagic Cell Death in A549 Cells
نویسندگان
چکیده
Metal oxide nanoparticles (NPs) are among the most highly produced nanomaterials, and have many diverse functions in catalysis, environmental remediation, as sensors, and in the production of personal care products. In this study, the toxicity of several widely used metal oxide NPs such as copper oxide, silica, titanium oxide and ferric oxide NPs, were evaluated In vitro. We exposed A549, H1650 and CNE-2Z cell lines to metal oxide NPs, and found CuO NPs to be the most toxic, SiO2 mild toxic, while the other metal oxide NPs had little effect on cell viability. Furthermore, the autophagic biomarker LC3-II significantly increased in A549 cells treated with CuO NPs, and the use of the autophagy inhibitors wortmannin and 3-methyladenin significantly improved cell survival. These results indicate that the cytoxicity of CuO NPs may involve the autophagic pathway in A549 cells.
منابع مشابه
CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملThe Effects of Synthesized Superparamagnetic Iron Oxide Nanoparticles and Electromagnetic Field on Cell Death of MCF-7 Breast Cancer Cell Line
Introduction: Iron oxide nanoparticles, owing to their very small size and superparamagnetic properties, have been considered a potential candidate for several medical applications such as magnetic cell separation, magnetic resonance imaging (MRI), magnetic targeted drug delivery magnetichyperthermia. The present study aimed to synthesize and evaluate the characteristics of super...
متن کاملThe Effects of Synthesized Superparamagnetic Iron Oxide Nanoparticles and Electromagnetic Field on Cell Death of MCF-7 Breast Cancer Cell Line
Introduction: Iron oxide nanoparticles, owing to their very small size and superparamagnetic properties, have been considered a potential candidate for several medical applications such as magnetic cell separation, magnetic resonance imaging (MRI), magnetic targeted drug delivery magnetichyperthermia. The present study aimed to synthesize and evaluate the characteristics of super...
متن کاملGenistein enhances TRAIL-induced cancer cell death via inactivation of autophagic flux.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a transmembrane cytokine that is a promising anticancer agent as it selectively induces apoptosis in various types of tumor cells. Autophagic flux, which includes the complete process of autophagy, and suppression of autophagic flux has been increasingly recognized as a favorable and novel therapeutic approach for cancer treatme...
متن کاملMetal oxide nanoparticles induce cytotoxic effects on human lung epithelial cells A549
Increasing in production and exposure to engineered nanoparticles (NPs), make necessary to acquire information about NP potential adverse health effects. Many studies, focused on NP toxicity, highlighted their cytotoxic potential but there is still a lack of information about the biological mechanisms involved. The aim of this research is the comparison of cytotoxicity between two types of meta...
متن کامل